X-1/x-9+1/x-3=2/x+3

Simple and best practice solution for X-1/x-9+1/x-3=2/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X-1/x-9+1/x-3=2/x+3 equation:



X-1/X-9+1/X-3=2/X+3
We move all terms to the left:
X-1/X-9+1/X-3-(2/X+3)=0
Domain of the equation: X!=0
X∈R
Domain of the equation: X+3)!=0
X∈R
We add all the numbers together, and all the variables
X-1/X+1/X-(2/X+3)-12=0
We get rid of parentheses
X-1/X+1/X-2/X-3-12=0
We multiply all the terms by the denominator
X*X-3*X-12*X-1+1-2=0
We add all the numbers together, and all the variables
-15X+X*X-2=0
Wy multiply elements
X^2-15X-2=0
a = 1; b = -15; c = -2;
Δ = b2-4ac
Δ = -152-4·1·(-2)
Δ = 233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{233}}{2*1}=\frac{15-\sqrt{233}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{233}}{2*1}=\frac{15+\sqrt{233}}{2} $

See similar equations:

| 3-2(x-9)=5x | | 3(8-n)+2n=2 | | 4x=32/2-8 | | -4+17=5b-8-4b | | 4x=32/2 | | 6=2v^2-3v+1 | | 8(8-n)+2n=2 | | 3y+6=7y-16 | | 9x=12(1.3) | | 3+(x-8)=15 | | 11(7-b)B=3 | | -360=-30(-4b) | | 3t-18=4-(3-3/4t) | | 120-84=40y-49y | | 3x-5-(-4x)=-2-(-8x)-2 | | 4-5z=-14 | | -25-(-4)=x/4 | | 7-3y=-5 | | X4-10x3+35x2-50x-96=0 | | 13n-19n=18 | | -83+13y+4=6(3y-5)-9 | | 558=520(1+0.125x) | | 45-17=4(x-3) | | 26+3y-10=13y-14-4y | | 4x−5=19 | | X-2/x-1=1 | | 17/√p+19/√p=√p | | 0=27x-0.83x^2 | | 3=m+6 | | 17+5x=8+4x | | 90=3x+6=5x+4 | | 7x+31=4x+11 |

Equations solver categories