X-6/3x+1=x+5/x

Simple and best practice solution for X-6/3x+1=x+5/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X-6/3x+1=x+5/x equation:



X-6/3X+1=X+5/X
We move all terms to the left:
X-6/3X+1-(X+5/X)=0
Domain of the equation: 3X!=0
X!=0/3
X!=0
X∈R
Domain of the equation: X)!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
X-6/3X-(+X+5/X)+1=0
We get rid of parentheses
X-6/3X-X-5/X+1=0
We calculate fractions
X-X+(-6X)/3X^2+(-15X)/3X^2+1=0
We add all the numbers together, and all the variables
(-6X)/3X^2+(-15X)/3X^2+1=0
We multiply all the terms by the denominator
(-6X)+(-15X)+1*3X^2=0
Wy multiply elements
3X^2+(-6X)+(-15X)=0
We get rid of parentheses
3X^2-6X-15X=0
We add all the numbers together, and all the variables
3X^2-21X=0
a = 3; b = -21; c = 0;
Δ = b2-4ac
Δ = -212-4·3·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{441}=21$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-21}{2*3}=\frac{0}{6} =0 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+21}{2*3}=\frac{42}{6} =7 $

See similar equations:

| 5x+194=x | | 5x-3/x=102 | | -3/5=1/10q | | (x-9)^2=(x+3)2 | | 1.5x=6*45 | | x^2+9=6x+25 | | 2r+5r+3=0 | | 225-34w+w^2=0 | | 6+(-1)(2+3a)-(-4a)=-3(a-2)-4 | | 5.27+k=2.27/70 | | 4x-40+x=180 | | 4x^2+14x-14=0 | | 4n+5=-25 | | 3+(x+8)/3=0 | | 3+(x-8)/3=0 | | (2x+1)=(28-4x) | | -6x-x2=-x2-6x+432 | | (2x+1)=(28-4) | | R(x)=(12+0.5x)(36-2x) | | 2b-4/6=b-3/18 | | 11/3=x/39 | | 20^x=0.05 | | 9x/3x=5/6 | | 1.x/2-1=3² | | 54=x-0.9x | | .08x+.09(9,000-x)=750 | | 11=5x+11x | | 4x-8=5-4 | | -6(x=2)=30-4x | | F(-8)=6x-7 | | |5w+15|=5 | | M(x)=-0.015x^2+1.36x-7.5 |

Equations solver categories