X.2(x+3)=8-3(x-4)

Simple and best practice solution for X.2(x+3)=8-3(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X.2(x+3)=8-3(x-4) equation:



X.2(X+3)=8-3(X-4)
We move all terms to the left:
X.2(X+3)-(8-3(X-4))=0
We multiply parentheses
X^2+3X-(8-3(X-4))=0
We calculate terms in parentheses: -(8-3(X-4)), so:
8-3(X-4)
determiningTheFunctionDomain -3(X-4)+8
We multiply parentheses
-3X+12+8
We add all the numbers together, and all the variables
-3X+20
Back to the equation:
-(-3X+20)
We get rid of parentheses
X^2+3X+3X-20=0
We add all the numbers together, and all the variables
X^2+6X-20=0
a = 1; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·1·(-20)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{29}}{2*1}=\frac{-6-2\sqrt{29}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{29}}{2*1}=\frac{-6+2\sqrt{29}}{2} $

See similar equations:

| X.2(x+3)=8-3(x-4 | | 300=300-6x | | 2x+5+4x+15=180 | | nXn²=343 | | -11.2+4(2.1+q=-0.8 | | 8x()=872 | | 22²(x‐3)=16 | | (2x+8)+17=(4x-7) | | 8-(3-1x)=6x | | 5x/7=14 | | 12y-12y=5 | | 13+2b=25 | | 3x/7-2=1 | | 2.02=1.6x+3.3 | | 3x-x-5=2(x+)-9 | | c=37.17+0.25 | | 13x=12+9x/13 | | 9(x-4)-2=-38 | | 3x=8+6x/3 | | 3.54x-2=^2 | | X+7=-x+21 | | Y=-8=4(x+3) | | a+(-21)=30 | | 24=3(2p-7)-1p | | 24=h/18-16-4 | | X+11=5x+27 | | A={x/x=-2}B={x/x4} | | -2p=-5p-18 | | -4p=-7p+12 | | 5p=-p+12 | | 7-3x=3-1x | | 5-1x=2x-7 |

Equations solver categories