If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X/3-4/X+2=6X/3X+6
We move all terms to the left:
X/3-4/X+2-(6X/3X+6)=0
Domain of the equation: X!=0
X∈R
Domain of the equation: 3X+6)!=0We get rid of parentheses
X∈R
X/3-4/X-6X/3X-6+2=0
We calculate fractions
(-6X^2)/27X^2+X^2/27X^2+(-108X)/27X^2-6+2=0
We add all the numbers together, and all the variables
(-6X^2)/27X^2+X^2/27X^2+(-108X)/27X^2-4=0
We multiply all the terms by the denominator
(-6X^2)+X^2+(-108X)-4*27X^2=0
We add all the numbers together, and all the variables
X^2+(-6X^2)+(-108X)-4*27X^2=0
Wy multiply elements
X^2+(-6X^2)-108X^2+(-108X)=0
We get rid of parentheses
X^2-6X^2-108X^2-108X=0
We add all the numbers together, and all the variables
-113X^2-108X=0
a = -113; b = -108; c = 0;
Δ = b2-4ac
Δ = -1082-4·(-113)·0
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-108}{2*-113}=\frac{0}{-226} =0 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+108}{2*-113}=\frac{216}{-226} =-108/113 $
| 9x=-9x-2 | | -5+4k=5k | | (8x0.6)+R=5.0 | | 7u/3=-35 | | 10+7z=3z−10 | | 6+6p=7p | | 3x-2.5=9.5 | | 2x+4=2x+22 | | -13x-18=-96 | | 25-x-3=4(x-2) | | -6y=-12/5 | | 6a=4(a=5) | | -3+8d=9d | | 3-7x+16x-14=9-6x+9x-20 | | 12=5/9(f-32 | | 5/15=15/w | | 76/5x=116 | | 6+6c=9c | | 8x0.6)+R=5.0 | | X-2y+4=10 | | 7(x+4)=7(4+x) | | 8x-15x+7=9+2x-9 | | 3x-0.5=9.5 | | 4(c+12)=-56 | | 512x9-1=0 | | 3/5=-5/3k | | -9g=8−10g | | x^2+19x-92=0 | | 7x/10=4x/7+9 | | 9y=10y+9 | | 16+7x-5+2x=12x-3-x | | 8x=-9x |