X2*122=(2+x)2

Simple and best practice solution for X2*122=(2+x)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2*122=(2+x)2 equation:



X2*122=(2+X)2
We move all terms to the left:
X2*122-((2+X)2)=0
We add all the numbers together, and all the variables
X2*122-((X+2)2)=0
Wy multiply elements
122X^2-((X+2)2)=0
We calculate terms in parentheses: -((X+2)2), so:
(X+2)2
We multiply parentheses
2X+4
Back to the equation:
-(2X+4)
We get rid of parentheses
122X^2-2X-4=0
a = 122; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·122·(-4)
Δ = 1956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1956}=\sqrt{4*489}=\sqrt{4}*\sqrt{489}=2\sqrt{489}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{489}}{2*122}=\frac{2-2\sqrt{489}}{244} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{489}}{2*122}=\frac{2+2\sqrt{489}}{244} $

See similar equations:

| y(5+4)=18 | | 4x-10=2-3x | | 4(3n=3)=60 | | 2x+2x=2x-24=90 | | 2x+2x=2x-24=180 | | -(4v+7)=1 | | 2x-24=2x | | F(x)=3x-40 | | 16x=14+x | | 3x-14=77 | | x^2-100x+391=0 | | 4(5x-2)=x-4 | | 5-3•(3+5x)=71 | | 6=2-y | | 2x+2x=2x-24 | | 5/3(e-6)=e/7+22 | | 2x-24=2x+2x | | X2-49=x-7 | | (x+4)*(x-2)=135 | | 13+2a=3a-14+2 | | 3192+.1x=x | | x+40=54+43 | | x+40=54+53 | | -a/9=1.6 | | (2x-8)(x+6)=(42)(24) | | -16=-3n+7n | | -2=4n+6+8 | | -2=4n+5-6+8 | | x^2+x+2(0.5)^x-9=0 | | -2=4n+5+8 | | 2(0.5)^x-5=-x^2-x+4 | | 3x+79=5x+4x+7 |

Equations solver categories