X2+(x+1)2+(x+2)2=149

Simple and best practice solution for X2+(x+1)2+(x+2)2=149 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+(x+1)2+(x+2)2=149 equation:



X2+(X+1)2+(X+2)2=149
We move all terms to the left:
X2+(X+1)2+(X+2)2-(149)=0
We add all the numbers together, and all the variables
X^2+(X+1)2+(X+2)2-149=0
We multiply parentheses
X^2+2X+2X+2+4-149=0
We add all the numbers together, and all the variables
X^2+4X-143=0
a = 1; b = 4; c = -143;
Δ = b2-4ac
Δ = 42-4·1·(-143)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14\sqrt{3}}{2*1}=\frac{-4-14\sqrt{3}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14\sqrt{3}}{2*1}=\frac{-4+14\sqrt{3}}{2} $

See similar equations:

| 9x+10=-10 | | 2^(4x)+2^(-4x)=119 | | ((3g-7)/4)=8 | | 2b-5=-3 | | X^2+(x+1)^2+(x+2)^2=149 | | X-5=5x+4 | | 2.5x=x+54 | | (5+n)+(n-5)=40 | | 3x-12+5x=4 | | 9-10(x-6)=2x+44 | | 14=–2w | | 5n-14=58 | | 6(x-3)=38 | | 10x+8+-7=23 | | 7c+12=-2 | | 3a+19=30 | | 4(x+-3)=20 | | -1/2-6/7y=-4/3 | | 3x(6+4)=34 | | -15=-8z= | | 50x+1250=12500 | | -(-17+28)+2(9+8x)=5(x+1)+7 | | 10+x+x-6=226 | | 8a+18-8=+2-7-9 | | 1/5t-1=24 | | y+(y+5)+(y+11)=55 | | (6^3/x)/(5+4)+37=39 | | 61=5x+11 | | -9d-20=28+3d | | 5x(6)=36 | | 3/4(x-19)=-15 | | c+20/8=9 |

Equations solver categories