If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+100X-1200=0
We add all the numbers together, and all the variables
X^2+100X-1200=0
a = 1; b = 100; c = -1200;
Δ = b2-4ac
Δ = 1002-4·1·(-1200)
Δ = 14800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14800}=\sqrt{400*37}=\sqrt{400}*\sqrt{37}=20\sqrt{37}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{37}}{2*1}=\frac{-100-20\sqrt{37}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{37}}{2*1}=\frac{-100+20\sqrt{37}}{2} $
| -28+3m=-48 | | 2(c+3)=6 | | 2x+3=-14 | | 7t+11=18. | | 4b+4=16 | | 3(r+3)=12 | | 0=-5x^2-90x+127 | | 1+4y=29 | | 5q+15=20 | | 106=-7x+5(-3x-14) | | 2(p+7)=20 | | b/6+18=18 | | 2x+3=4x+6-(2x+3 | | q+18/18=1 | | 2c+1=16 | | 2s+9=20 | | 15b+5=20 | | 3(d+3)=12 | | 3r+1=6 | | 153=m*9 | | 12b+2=14 | | 2u+12=18 | | 4n^2-17n+7=0 | | 9+y=26 | | 0.59x+28=1.29x | | 19m–12=26 | | 10y=24+6Y | | 10-5/6x=20 | | 7v+10=17 | | 5*(29.6-x)x=13 | | 120=4x+3(-7x-6) | | 5x+8=3+6x |