If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+105X-2500=0
We add all the numbers together, and all the variables
X^2+105X-2500=0
a = 1; b = 105; c = -2500;
Δ = b2-4ac
Δ = 1052-4·1·(-2500)
Δ = 21025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21025}=145$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-145}{2*1}=\frac{-250}{2} =-125 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+145}{2*1}=\frac{40}{2} =20 $
| 9t-14=3t+10 | | -160=10a | | -9+-8d=15 | | 209=(3x+1)+48 | | 119=7m | | 100=1+9x | | 209=(3x+1) | | 3y-7=8 | | 9j+2=83 | | 3x-7=3(x-3+2 | | ¼(y–20)=12 | | –g+–8=–17 | | f(X)=X/4–1 | | 2(i-7)-10=12-4i | | 7(y+5)=63 | | 5(x+3)+4x=6x+18 | | 11x-44=4x+40 | | i-5=3-9(i+2) | | q/3-(-10)=14 | | 1x-5x(10-2x+3x)=2x-50x/20x-20 | | 8d+1=97 | | 3n+40=(3n+12)+n | | x-55=62 | | 12u+25=4u-31 | | c-3+8c=29 | | F(345)=t+35 | | 3.2g-2.4=23.6 | | (2x-7)+4=90 | | 2(5x+9)=36-7(x-2)+x | | 11=3h-1 | | 2(2x-10)=-2+2x | | 4+4x=4x+7.4=7 |