If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+10X-5600=0
We add all the numbers together, and all the variables
X^2+10X-5600=0
a = 1; b = 10; c = -5600;
Δ = b2-4ac
Δ = 102-4·1·(-5600)
Δ = 22500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{22500}=150$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-150}{2*1}=\frac{-160}{2} =-80 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+150}{2*1}=\frac{140}{2} =70 $
| 1/4^(1-3)+2^(3x+1)=1/4^(2-3x)+2(3x+3) | | 3a-4a=6+8 | | 4-3(x-2)=2x | | x×3-2x×2=0 | | 4(3x+5)=6x+2 | | -y^2+2y+1=0 | | 1/4(8x-24)-5x=6x-3(x+7) | | x-x-3/5=3x-1/2 | | d²-5d-24=()() | | 5x^2-17x6=0 | | 5x^2-17x-16=0 | | d-2.8+0.2=-14 | | 2x^2-32=- | | 2(7u-3)-(u+9)-3(20+1)=24 | | 6x^2+12x=18+35x | | 6x^2-23x=18+35x | | X(x+1)=19 | | 10x-1/3+5/6=3x+1/2+7x | | 1x(50)=25 | | (x^2-3x-10)=0 | | 2x^2+5.5x-20=0 | | (x^2+3x+10)=0 | | x(x^2+3x+10)=0 | | -35z^2+29z-6=0 | | X^3+3x^2+10x=0 | | 3(2x-5)=4x+2x+8 | | 7/10y=49/100 | | x=12/35Y | | 7(u+4)=35 | | X+(2x)=27 | | 8/9x=24=x | | -5x/2=x-6 |