If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+10X-63=0
We add all the numbers together, and all the variables
X^2+10X-63=0
a = 1; b = 10; c = -63;
Δ = b2-4ac
Δ = 102-4·1·(-63)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{22}}{2*1}=\frac{-10-4\sqrt{22}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{22}}{2*1}=\frac{-10+4\sqrt{22}}{2} $
| 8(x-10)-15=-167 | | 2(x-16)-6=-46 | | (z-6)(z^2+14z+74)=0 | | 2(x+2)+18=18 | | 4(x+10)+9=73 | | 2(x-11)-19=-59 | | 3(x+11)+6=42 | | 3(x+15)+17=44 | | 9(x-3)-13=23 | | 24x+8=4(4x+18) | | 3(x+13)+19=40 | | 7(x-9)-17=-31 | | 5(x+10)=65 | | 9+4b=1 | | 3×n-4=8 | | 6+2•(3x-8)=8 | | 9x+20=4x+55 | | 2x+12=-2x+44 | | 5^x+5^(x+2)=260 | | x×x=216 | | b+6=5b-14 | | 10(x+10)+18=88 | | 4y-7=9y+11 | | 4x-x(x-2)+1/2(x2+3)=2(x+3)-x(x-4) | | 3x=5x+60=60-12x | | 8(x+5)=-16 | | 10(x+14)+10=90 | | x+325=542 | | 1(x+11)=13 | | 4(x+13)-8=28 | | 6x+7-19=7x+13-3x | | 2(x+12)+15=43 |