If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+10X=39
We move all terms to the left:
X2+10X-(39)=0
We add all the numbers together, and all the variables
X^2+10X-39=0
a = 1; b = 10; c = -39;
Δ = b2-4ac
Δ = 102-4·1·(-39)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-16}{2*1}=\frac{-26}{2} =-13 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+16}{2*1}=\frac{6}{2} =3 $
| -0.75x+3=-15 | | 4+2(8a–5)=36 | | 4+2(7a–5)=36 | | 5/6y+1=1/3y+5/9 | | 42=15x-2x | | n/10+9=17 | | 5(3a–4)=10 | | 7x+13=4x+61 | | c-72/8=3 | | 16x2+16x+4=0 | | 7(y+5=98 | | 5t^2-20t+100=0 | | 3x+3+9-24=15 | | 4x+8=X+26= | | x/5+19=0 | | n+50/9=8 | | 5p=3p-8 | | 8+8(x+7)=40 | | 12/20=c/30 | | 5t-t-7=3t-7 | | w-82/6=2 | | 3p^2=56+31p | | 4x+19=6x+7 | | 7=10+x/2 | | a/5=4/20 | | ÷43=4n | | 3(x-5)-14=2(x-7)2 | | w−82/6=2 | | 10x-15=5x+90 | | 3x+2+2x+1+x+5+2x=360 | | 4.9x+45.6=24.6-5.6x | | 18.4y—3.1=16.4y+16.9 |