If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+124X+49=1000
We move all terms to the left:
X2+124X+49-(1000)=0
We add all the numbers together, and all the variables
X^2+124X-951=0
a = 1; b = 124; c = -951;
Δ = b2-4ac
Δ = 1242-4·1·(-951)
Δ = 19180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19180}=\sqrt{4*4795}=\sqrt{4}*\sqrt{4795}=2\sqrt{4795}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(124)-2\sqrt{4795}}{2*1}=\frac{-124-2\sqrt{4795}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(124)+2\sqrt{4795}}{2*1}=\frac{-124+2\sqrt{4795}}{2} $
| 42=x^2+4x-150 | | 4x-12+19=3x+12 | | 20-(3x+1)=2 | | (2x-1)2-4(3x+1=2 | | 30x+79=47 | | 5x-8=×+12 | | -5x+10+2x=-2 | | 62x+39=17 | | 8(4n+7)=152 | | 16x+50=24 | | -2=-5t+2t | | 94x+11=9 | | 56x+93=21 | | 4m-8=3m+1 | | 3y–5=12 | | X2/9+y2/16=1 | | 8+9x=3+4x | | 50x+99=73 | | -5+6y=2 | | 2+5x=7+6x | | 34x+82=88 | | 14x+2=40 | | 22=60/y+2×y | | 1=4x+550 | | 5x-2+5x-2=5x-2 | | 57x+55=97 | | 3r-5r-r/6=4 | | 48x+61=5 | | 2x-2=-4x-12+4x | | 4x+45=31 | | 7x+24=-x | | (7q-46)=3q+6 |