If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+13X=-40
We move all terms to the left:
X2+13X-(-40)=0
We add all the numbers together, and all the variables
X^2+13X+40=0
a = 1; b = 13; c = +40;
Δ = b2-4ac
Δ = 132-4·1·40
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-3}{2*1}=\frac{-16}{2} =-8 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+3}{2*1}=\frac{-10}{2} =-5 $
| 56/x=16/6 | | -3(4p+6)-2(1-11p)=3(9+3p) | | 1/3*(x+1/2)=7/30 | | (10b-9)-3(3b+3)=-4 | | -8d-5d+527d=72 | | (x+1)(x-1)=2(5x-101/2) | | 7x-X2=5x-6 | | 42÷x=29-22 | | 4m^2-4=16m | | 2.5=y10/y+12 | | u+86=680 | | m/3=1.8 | | 25=f−154 | | 117=t−287 | | -12z=708 | | -611=13s | | 11=u/32 | | k−184=-38 | | w/23=21 | | p−17=49 | | k-8=28 | | 31=c/22 | | x^2+-2^x+-8+16=0 | | x2+-2x+-8+16=0 | | j−(-122)=623 | | 36=u/5+9 | | X+20=2x10 | | j−-122=623 | | 6÷h-1=3 | | 905=z+160 | | 41=s+10 | | 4x+5x+3+9=5x+4+7x |