If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+14X-347=0
We add all the numbers together, and all the variables
X^2+14X-347=0
a = 1; b = 14; c = -347;
Δ = b2-4ac
Δ = 142-4·1·(-347)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-12\sqrt{11}}{2*1}=\frac{-14-12\sqrt{11}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+12\sqrt{11}}{2*1}=\frac{-14+12\sqrt{11}}{2} $
| 500/100=x/55 | | x+(2x+1)=73 | | 0.25x-075=4 | | 2x+1/2x=35 | | -5x^2+64x+84=0 | | 1+–3u=–5 | | 3=5x+7 | | x3-13=14 | | 3/4f=5/6 | | k/3− 3=1 | | 5r—58=66 | | -11t+7t=16 | | 210=2x^2+x | | f/3− 4=–2 | | 14=x3−13 | | 5-3/5x=4 | | d/3+ 10=12 | | 5x=1.85 | | 11w+-17w=-18 | | 8=4/3u | | 15+x2=50 | | 4x+8=2x+22 | | Y=-4x2+6 | | 5-3/4x=4 | | 11w+-17=-18 | | 50/100=x/10 | | 127=2x+4 | | c/2− 1=1 | | t/3+ 5=7 | | x+7=-90/x | | 2=g/3+6 | | 1=u2− 1 |