If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+16X-22=0
We add all the numbers together, and all the variables
X^2+16X-22=0
a = 1; b = 16; c = -22;
Δ = b2-4ac
Δ = 162-4·1·(-22)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{86}}{2*1}=\frac{-16-2\sqrt{86}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{86}}{2*1}=\frac{-16+2\sqrt{86}}{2} $
| 3/2.5=x/25 | | 5x+x+3=9 | | 2x+x+6=7x-4x+16 | | (-2x+4)-9=55 | | -4-2(2-x)=6 | | 2x+4=−(−7x+60) | | 7(7x-3)=126 | | 4x^2〖+12=3x〗^2+12 | | (x-3)^2/3=5 | | (-2x4)-9=55 | | F(x)=2x+9/x-3 | | (b+1)/2=1/3 | | 3/4k-3/8k=1/2 | | (3/4)x+5=5 | | 6x-18+4x-2=9x-3 | | -5(1+7b)=-180 | | y2=1/49 | | 6x-18+4x-2=9-3 | | 10x+.5x=21 | | (3x)=(6x) | | 51x+2,149x-72=44(50x=28) | | -0.02x^2+32=0 | | -4(3x-5)=104 | | 6x+2•(-4x+4)=7 | | 150=6(-7x-3) | | 5n-20=3n+10 | | -x^2-32=0 | | 15+13x=14x+12 | | (13x-11)=67 | | -18=p-3 | | 3x+x+3=7 | | 3(4x+4)=17x+10-5x+2 |