If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+20X+56=0
We add all the numbers together, and all the variables
X^2+20X+56=0
a = 1; b = 20; c = +56;
Δ = b2-4ac
Δ = 202-4·1·56
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{11}}{2*1}=\frac{-20-4\sqrt{11}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{11}}{2*1}=\frac{-20+4\sqrt{11}}{2} $
| (y^2-7)^2+6(y^2-7)-16=0 | | 4^2x+5=8^2x+1 | | x-10+x+30=110 | | 8+7s+5=s6 | | 0=-16t^2+12t+8 | | x-5.2=-30 | | 4x-10=15x-6 | | 1.2t+3(t+8.2)=37.5 | | 2z+3-4z=z=2 | | 35=17+a | | 5–x–2=3+4x+5 | | -400=10(5+7n) | | x/9+3=8 | | 7x-16=4x+23 | | 5(x–2)=2(10+x) | | 3x(+2)=7x-6 | | 7n+2=-14+5n | | 5(4x-7)=-x-7 | | 1÷2m+3÷4=54 | | 9(5m-3)=513 | | 7x+6-2x+3=34 | | x+5÷3=4 | | x-0.5=-20 | | 8x-x=x=3 | | t/2/7=6 | | 7x/10-3x/10=40 | | 0,2^x=10^6 | | 3{x+2}=2{2x+7} | | -3=-8(5+8k)-3(5-4k) | | 0.2^x=10^6 | | -19+2b=-7b-4(13-3b) | | -1=(2x+7)=3 |