If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+20X+82=0
We add all the numbers together, and all the variables
X^2+20X+82=0
a = 1; b = 20; c = +82;
Δ = b2-4ac
Δ = 202-4·1·82
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-6\sqrt{2}}{2*1}=\frac{-20-6\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+6\sqrt{2}}{2*1}=\frac{-20+6\sqrt{2}}{2} $
| 2=f-10/3 | | -14=m/7 | | -5(m-2)=10 | | 35n+60n=258. | | n-5/2n-7=3/4 | | (x)/8x+3=4x+13 | | -1=5c+9 | | 329=89+12x | | 2x^{2}+5x+6=-2x^{2}-x=30 | | 4m-5(3m+10)=12G | | 5x-1=-7+6x | | 30x-5x-75=25 | | 8-0.5x=1.5x-10 | | -5(m—2)=10 | | -3p+8=5-(7p+6 | | 2-x/3=-2 | | 4x+5(3x-11)=2 | | 4x–2+3x–7=–51 | | 3+4y=17 | | 5-4/3x=11-2/3x | | 3x-8=-×+40 | | 190=79-u | | -(6x-3=-29+2x | | 6*2.5=g | | 3+4y=17 | | 8=2(z-2) | | 30x-10x-25+4x-5+15x=48 | | 12z-8=100 | | -5-6r=7 | | ‐3–6(x-7)=42–6x | | 6x-3=2(3x-1) | | 154-v=220 |