If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+20X-80=0
We add all the numbers together, and all the variables
X^2+20X-80=0
a = 1; b = 20; c = -80;
Δ = b2-4ac
Δ = 202-4·1·(-80)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{5}}{2*1}=\frac{-20-12\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{5}}{2*1}=\frac{-20+12\sqrt{5}}{2} $
| 4(3-x)-3+5x=10 | | 3x+4+5x+1+2x+5=4x+2x+26 | | w-7.9=1.2 | | 2995+9x=23x | | 2x^4-х^3-14x^2-19x-6=0 | | 11=c-5+8 | | 2.7=8.3-0.8x | | (10x+1)=(8x+2) | | 1=2q-7 | | x+3×4x=45 | | 2x-16+5x=3x-7x | | x-1.4=2.6 | | 3(w-4)=2(22w) | | 5x-9+-6+4=4 | | 15+2(h)=3(h)-15 | | 61x^2+1=10x | | x5+125x2=0 | | X+3(x+1)=-5 | | 61^2+1=10x | | -(3x-2)-(8x-7)+5=-8(x-3)-(5x+5)+3 | | X+20+y-40=180 | | 2x-8+6x=5x-6 | | 6x-7=127 | | 6x+6=12+6x | | -7-5(1-3k)=-26 | | 5a+20=14a+20 | | 10-1d=-34-5 | | 4x=2(2x+2)-4 | | 95=g-350 | | -2(x=10) | | 8x-17=2x+7 | | 4x+5=-11+3x |