If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+20X=384
We move all terms to the left:
X2+20X-(384)=0
We add all the numbers together, and all the variables
X^2+20X-384=0
a = 1; b = 20; c = -384;
Δ = b2-4ac
Δ = 202-4·1·(-384)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-44}{2*1}=\frac{-64}{2} =-32 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+44}{2*1}=\frac{24}{2} =12 $
| 3t+2=2t-5 | | 25x+73=27 | | Y=4x^2-5x-10 | | 3x-17=183 | | 7=w-30/w | | 2x-12-14=4x-16 | | 100=x(.02)-x | | X2+y2-10y+9=0 | | 2z(z-3)(z+8)=0 | | 5(x+15)=-7(3-x)-7x | | 22x+5=19-4x | | 5y-10=4y+24 | | 35x-6=7x+35 | | 9x-7=5x+19 | | 3x-7=2187 | | 9v+27=6v | | 34x-3=81 | | 7/8u=-49 | | 8-3z=35 | | y-5.3=14.3 | | 4+3(x+2)=104 | | 5x+3x=14x | | 130=16x+4+4x+6 | | 14x=5x-3x | | 53y-y=53 | | 6(2x+1)+(13x-7)=0 | | x=1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16 | | 5x-11=-2+17 | | 5(2x+3)-3(5x-2)=84 | | -6y+y=7y | | M+2-15/m=0 | | x-x^2-39=0 |