If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+25X+10=0
We add all the numbers together, and all the variables
X^2+25X+10=0
a = 1; b = 25; c = +10;
Δ = b2-4ac
Δ = 252-4·1·10
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-3\sqrt{65}}{2*1}=\frac{-25-3\sqrt{65}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+3\sqrt{65}}{2*1}=\frac{-25+3\sqrt{65}}{2} $
| 30=2(x+6)-8x | | X^2+3x-93=0 | | X^2-t^2=0 | | x+x/10=28 | | 3x(4-2)=6 | | 3x(4-2)+4*8=16+3x | | 3x(4-2)+4•8=16+3x | | 3x+7=7x(2x+4) | | 5.2^x-4.4^x-81=0 | | 3+1/2h=-7 | | 121=36+b^2 | | 121=36+x^2 | | (x-5)(x-7)=13 | | 1586=7^x | | 75+2x=40+2,1x | | 80x3=4 | | 10-x=2x+7 | | 5w-51.25=13+3/4w | | 5x-40=50+3x | | 19x=12x+(129000+18000) | | 20x=12x+129000 | | -25(3x-1)=-2(10x+4) | | -2(x-9)=-3(x-2) | | 120+-46x+3x^2=0 | | 120+-46x+3x^2)=0 | | 8(x-5)=-3(x-2) | | 120+-46x+3x2)=0 | | 5x+55=5 | | -8+2x-2+3x=-10x+4 | | 25m=5 | | 2(2+x)-4x=12 | | 15-3z=8-9z |