If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+32X+255=0
We add all the numbers together, and all the variables
X^2+32X+255=0
a = 1; b = 32; c = +255;
Δ = b2-4ac
Δ = 322-4·1·255
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2}{2*1}=\frac{-34}{2} =-17 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2}{2*1}=\frac{-30}{2} =-15 $
| -2(x=3=3(x-7) | | 7x²=14x | | -5(x+3)=3x+24 | | 30=q/6+22 | | 1/6x+25=5/6x-31 | | 2x+3-3x=21 | | 4/3x-5=-13 | | 6t+2+3t17=10 | | -2+7x=-7+8x | | -2=2y-10 | | s/10-(-79)=82 | | -2c+1=-7 | | x^2+(x+1)^2+7^2=56^2 | | -8(d+20)=-24 | | 25-7-5x=12-3x | | 7-2a+5-5a=-2 | | ?x?=54 | | y/3+y=180 | | 32-(-4n)=-24 | | -9+1/2x=1.5 | | 7a+31=-4 | | (x^2)+((x+1)^2)+7=56 | | 3^(1-3x)=2^x | | 12x+2=5x+2 | | (40)x=600 | | 3k-10=-5K+38 | | 13.44+y=24.44 | | 7y-4+2y+6=180 | | p=11+1 | | 9(v-92)=18 | | 8=4(u-6) | | 3/4y=-81/4 |