If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+32X-180=0
We add all the numbers together, and all the variables
X^2+32X-180=0
a = 1; b = 32; c = -180;
Δ = b2-4ac
Δ = 322-4·1·(-180)
Δ = 1744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1744}=\sqrt{16*109}=\sqrt{16}*\sqrt{109}=4\sqrt{109}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{109}}{2*1}=\frac{-32-4\sqrt{109}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{109}}{2*1}=\frac{-32+4\sqrt{109}}{2} $
| -6n+511= | | 1/4(4a-1)=-1/9-4/9 | | 14-3y=-19 | | 180-(9x+51)=(3x+45) | | 1/5x+1/4x=5+5 | | 11.4x+5=6.8x+28 | | -19=-7+2k | | -5(3h+10)=100 | | 9t+1t+5=45 | | 3x-7x-7=4x+5-7 | | 4-4p=-4+4 | | 4(x+3)-4=44-5x | | -2.8s-10.12=-0.5s | | 4(x+5)=2(-2-x) | | −3(5−9x)=25+7x | | 3v-7=50 | | 3x-3=38 | | 7/3=-7/12x | | 0.20(y-1)+0.02y=0.16y-0.5 | | 30+-94=-8b | | 10m-5m=40 | | 5x-4/2=2x-1 | | -10(c-7)=-8(5-2) | | 8(x)=56 | | (p-4)=2 | | 13.7h-19.45=18.56+17.1h+2.79 | | -m+-9=-19 | | -11-24=76+9p | | 5-n=-12 | | 42.42=9g+3.54 | | 13w-2(4w+1)=w-8 | | 45+10x=-240 |