If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+35X-98=0
We add all the numbers together, and all the variables
X^2+35X-98=0
a = 1; b = 35; c = -98;
Δ = b2-4ac
Δ = 352-4·1·(-98)
Δ = 1617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1617}=\sqrt{49*33}=\sqrt{49}*\sqrt{33}=7\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-7\sqrt{33}}{2*1}=\frac{-35-7\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+7\sqrt{33}}{2*1}=\frac{-35+7\sqrt{33}}{2} $
| 3(x-1)-4(3x-7)=-2 | | 3(2x-1)-3(2-3x)=6 | | 3(3x-1)-3(2-3x)=6 | | 5.88/3-0.75=x | | 2(2x+1)+3(3x-1)=38 | | 6x-11=-x-39 | | -3x-14=-38 | | x3-49x-120=0 | | 8-5m=-3m | | X^3-49x-120=0 | | 4z/7+2=-4 | | 1/4x+2/3=3/5x-1/2 | | -26x+34=0 | | 15d+195=360 | | 2^x=2970 | | n-1÷2=17 | | 4z+3=2z-13 | | 10(x=1/2) | | 4(x-2)=8x+2 | | 6x+1–28=3–2x | | (6x+1)–28=(3–2x) | | 4q+5q=54 | | (6x+1)–28 =(3–2x) | | h/8+19=22 | | 10(d-92)=40 | | 16-3c=4 | | 15-2z=11 | | ?(n+3)=7n+21 | | -6a+3=10a-20 | | 118+x=x | | 4+6x=—4 | | x²+6x+30=0 |