If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+38X-2025=0
We add all the numbers together, and all the variables
X^2+38X-2025=0
a = 1; b = 38; c = -2025;
Δ = b2-4ac
Δ = 382-4·1·(-2025)
Δ = 9544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9544}=\sqrt{4*2386}=\sqrt{4}*\sqrt{2386}=2\sqrt{2386}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{2386}}{2*1}=\frac{-38-2\sqrt{2386}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{2386}}{2*1}=\frac{-38+2\sqrt{2386}}{2} $
| 42=2(4a–a)+-12 | | -7+y^2=2 | | -3912-3n)+6(-2n)=12 | | 6-x=3x+2-2x | | 5(3x^2-x-4)=x(3x-5)+88 | | 2(n-7)=2(4n+6)-2 | | 6/21=x/77 | | 4x×10=2x+24 | | 4y=40.Y=40 | | 3y–y+4y+3=21 | | -5d=35+2d | | 3g-3g+6g=12 | | 30=2w+16 | | (X-2)+(2x-46)+85+50=360 | | 4y=40y= | | 8d=28-6d | | s/12=2 | | 3=w/3-8 | | 4s-s+4s-3s=16 | | 5(x+25)=835 | | 6.1+x=9.4 | | 4(n)=n2+2n=5 | | -25=10-7(n-1) | | (2v-29)+(2v+7)+150=360 | | x-42=-17 | | 18x-7=8x+3 | | 1/2x-13=-4 | | 2r-33=6r-69 | | k+2k+3k-5k+3k=12 | | 3(w+8)=-6(3w-3)+3w | | 2.5/5=x/3 | | 2a*11=35 |