If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+3X-109=0
We add all the numbers together, and all the variables
X^2+3X-109=0
a = 1; b = 3; c = -109;
Δ = b2-4ac
Δ = 32-4·1·(-109)
Δ = 445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{445}}{2*1}=\frac{-3-\sqrt{445}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{445}}{2*1}=\frac{-3+\sqrt{445}}{2} $
| F(x)=x2+1/4 | | 1.8=6.6x | | 2(1x-3)=24 | | -3/w=-4 | | 2/3x-2/3=1/3 | | 25.12=(2)(3.14)(r) | | 6/n=0 | | m+9=-2.5 | | 5/g=10 | | -9k=-56 | | 7w-w=4 | | 43x-2=112 | | 7x+7x-14=0 | | X^2+2x+14=3 | | 25-6x+5=-6 | | -2(1x-1)+5x=2(2x-1) | | -5x+3-4+x=11 | | -7=4-2r | | -1.2=(x-120)/20 | | 43x-2=122 | | 8x+5x-3x=17+33-11 | | F-1(x)=x+2/3 | | 8j=-56 | | 3x-2(x-1)=7x-12 | | (-18x^-3)+(3x^-2)=0 | | 29=x-8 | | v/7=-2 | | 6−7c=-9c | | F-1(x)=-2/x-2 | | -9{x+4}=27 | | 10x+58=90 | | 24-(3x-9)-6=-2(4x-10)+5x+7 |