If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+3X=39
We move all terms to the left:
X2+3X-(39)=0
We add all the numbers together, and all the variables
X^2+3X-39=0
a = 1; b = 3; c = -39;
Δ = b2-4ac
Δ = 32-4·1·(-39)
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{165}}{2*1}=\frac{-3-\sqrt{165}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{165}}{2*1}=\frac{-3+\sqrt{165}}{2} $
| 5(x-2)+3x=2(3x+4)+36 | | 2(z)+3(4z)=990.50 | | |4x+1|=|3x+2| | | 15+ 2(13 +y)- 10=89 | | 3x-2(x-2)=64-3x | | 2(x)+3(4x)=990.50 | | x=1029-58*124/2*1240*434782483+-972 | | x=1029-58*124/2*1240*434782483+972 | | m4+-7m2+-18=0 | | 28=1029-58*124/2*1240*434782483+x*200 | | 28=1029-58*124/2*1240*434782483+x/2 | | 28=1029-58*124/2*1240*434782483+x | | 28=1029-58*124/2*1240*434782483/2x | | 28=1029-58*124/2*1240x | | 28=1029-58*124/2*1240/4x | | 28=1029-58*124/2/4x | | 28=1029-58*124/2x | | 28=1029-58*124x | | 5x-(2x+5)=7x-(45-x) | | 28=16*2-10/2*30/5*20x | | 28=16*2-10/24/3*20x | | (z−9)(z−2)=(z+9)(z+7) | | E^8.2x=14 | | 28=16*2-10x | | 3x-8/2x=11+3/2 | | -2=3(y-2)-y= | | (2/3/x)=(5/6) | | 45+7y=85 | | (1/x)=(1/2/4/5 | | 60+7y=90 | | -v+295=38 | | 215-w=174 |