If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X+4=8
We move all terms to the left:
X2+4X+4-(8)=0
We add all the numbers together, and all the variables
X^2+4X-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $
| f9-1/40=-89-1/40+4 | | 5(14-21x)=115x7 | | 3u+10=10 | | 5(8x+4)=40x-8 | | -3x-8=27x-6(5x-8) | | 4x-3/5=1 | | 8y-5y-8=10 | | 3(5x+4)=10x+3+5x+6 | | 166+2n=180 | | 6x-5=2x-6 | | x-16-4=4x-19 | | 0=9m-2m | | 7(x-3)=4x(x+5) | | 6x=9=27 | | X2+8x+16=10 | | 3u/4=48 | | 4+8=4x+8 | | -1+4x/5=3 | | 1–d=8 | | -4-10=4y-5y | | 12x+2=12x-7 | | 4/v= 2 | | 14+8m=14+3m-5m | | 11j+-6j+6=-4 | | 8x+6+14-2=360 | | 12x-6=68+4x | | 2(3x^2)=162 | | 18/x=10/x-4 | | 8x+6+14-2=180 | | (3x+2)=(15x-9) | | 3^(x+1)-8(3x-1)-5=0 | | 3(3+2z)=2(-4+3z) |