If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X+4=9
We move all terms to the left:
X2+4X+4-(9)=0
We add all the numbers together, and all the variables
X^2+4X-5=0
a = 1; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·1·(-5)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*1}=\frac{-10}{2} =-5 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*1}=\frac{2}{2} =1 $
| 60(n)=8 | | 5(f+2)=12+5f-3 | | (X+6)(6x+5)=0 | | 48r-12=28 | | 3y-8+13=4y | | 3k-10=5(k+1) | | -2/3x+15=17 | | 4x-2x=7-1 | | 5=y+29/8 | | O.3(4z-6)=0.5(2z+9) | | 10=g-46/4 | | 0=35-7(x=2) | | 11=19-4d | | (2+3x)*2+(2-3x)*2=26 | | -4(2+7x)=160 | | 5t=3t+3 | | (2+3x)^2+(2-3x)^2=26 | | 2c-2(3-8c)=3c-48 | | (2x+3x)^2+(2-3x)^2=26 | | 15x=8x+14x | | (2x+3x)^2+(2-3x^2=26 | | 3x-4=-10+x | | -6(6+6p)=-114 | | 7(2p+1)=9p+7+5p | | 4(y-2)=y-8= | | 64=n=8 | | 63+4u=11u | | 2g−8=10 | | h+81-81=52 | | 3(8-5r)=114 | | (x+30)=(2x-20) | | .5t+8-0.75t=4 |