If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X-160=0
We add all the numbers together, and all the variables
X^2+4X-160=0
a = 1; b = 4; c = -160;
Δ = b2-4ac
Δ = 42-4·1·(-160)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{41}}{2*1}=\frac{-4-4\sqrt{41}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{41}}{2*1}=\frac{-4+4\sqrt{41}}{2} $
| r/40-2.5=-2 | | 2k2-4k+2=0 | | 400=1.5^x | | 5p-1=15 | | 3x-2=4-8x | | 4b2+4b-1=0 | | 4/2=5d | | 7*(1-x)=-7 | | -8p2+4p+10=0 | | 21/2+r=25/6 | | (5c+7)–(=4c+6) | | 14x=35*22 | | 3j+5+25=180 | | 12(x-6)=8(x+8) | | 15x+3x=82.5 | | -23=7y+12 | | 35x=14*22 | | 4=-9y-14 | | 8v2-8v+2=0 | | I+5(j-1)=13 | | 5f-1+46=90 | | 8-4x=27 | | 3a+4+6=2a+56= | | 86=32+d | | 14v-14=2(5-7v)+4 | | 10(x-8)=8(+12) | | x+46+70+70=180 | | x/x-3.2=5.9 | | 50+2e+80=180 | | y=3^90 | | 4x-13=7x+10 | | 8c=9c−c |