If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X-19=0
We add all the numbers together, and all the variables
X^2+4X-19=0
a = 1; b = 4; c = -19;
Δ = b2-4ac
Δ = 42-4·1·(-19)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{23}}{2*1}=\frac{-4-2\sqrt{23}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{23}}{2*1}=\frac{-4+2\sqrt{23}}{2} $
| 102a+1=22a+3 | | -3y+-2=-17 | | 4−2z3=34−5z6 | | 0.20(y-4)+0.18y=0.08y-2 | | 2.3p+9=16.82 | | (3x+5=(x-25) | | 5x+7=(10x+5) | | 3x+4=9+4x | | 6x+24x+4=5 | | -3n-11=43 | | 6c-19+35+c+10=180 | | (8x+11)(12x-1)=x | | v/12-9=-8 | | 2b+4+91+3b=180 | | 9y-4=3y-16 | | x^2-3690=2940-24.4x | | 30+2s-19+s-20=180 | | 5x+8=5x+8=2x-192x−19 | | u+18+2u+3u=180 | | (p/2)+9=30 | | -6t2+9t=0 | | x-(7/5)=120 | | s+21+s+39+4s=180 | | 3x+2=84 | | 6x+38+58=180 | | 1/2(-1.4m=0.4)=m+0.2 | | 7x-24=5x+12 | | 2+20u=19u+18 | | (6x+4)(3x+2)=84 | | t-12+2t+48=180 | | 2(m=3)-2 | | 2y+15=4y-27 |