If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X-20=0
We add all the numbers together, and all the variables
X^2+4X-20=0
a = 1; b = 4; c = -20;
Δ = b2-4ac
Δ = 42-4·1·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{6}}{2*1}=\frac{-4-4\sqrt{6}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{6}}{2*1}=\frac{-4+4\sqrt{6}}{2} $
| 10w-2=4w+28 | | 4x+13=56 | | m+2m=6+2m | | 2a+a+87=180 | | 4(4h+1=2(5h+5) | | X2+4x+11=0 | | 6000*x=9000 | | -0.9y+1.35=0.1+0.9 | | x=(-40/5-9)*3-105/(-5)-10*3 | | 2(8x+3)-4(2x-3)=9x-(3X+6) | | 12m-5=11m- | | 8(2x+5)=6(8x-4) | | 30x2–19x–4=0 | | A=8x-10B=3x+90 | | (3x-5)(6x-8)=0 | | 8(2x+5)=6(8x-4 | | 4(2n+4)=7(9n+2)+6 | | 4(n)=3 | | 4x-3+2x+5=x-3 | | 4x=(x+45) | | (7z-9)(7z+9)=0 | | 1.05(1.24)(6-x)=7 | | -4(5x-9)+7=-20x+43 | | n÷4+24=32 | | F(x)=x-3x+5x-3 | | -4(5x-9)+7=20x+43 | | 5x^2+320=0 | | x+7=4x-1/2 | | x+30+3x+2x-10+4x-30=180 | | 5x-(2x/5)=3 | | X2+4x+21=0 | | 1/3x-9=-14 |