X2+4x-23=0

Simple and best practice solution for X2+4x-23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+4x-23=0 equation:



X2+4X-23=0
We add all the numbers together, and all the variables
X^2+4X-23=0
a = 1; b = 4; c = -23;
Δ = b2-4ac
Δ = 42-4·1·(-23)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{3}}{2*1}=\frac{-4-6\sqrt{3}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{3}}{2*1}=\frac{-4+6\sqrt{3}}{2} $

See similar equations:

| 3x+4=7x=12 | | 3x+4=7x12 | | x(x+1)=4-(x+2)² | | 17/x=34/3 | | ×^2-5x-6=0 | | 6x-18=180-(14x+38) | | 10=142/(5+q) | | (17x+4°)(12°+15x)=180° | | 6x+5=180-4x-45 | | 2÷3(x-5)-1÷4(x-2)=9÷2 | | 13*6+76=x | | 7x-94x+22=90 | | 18*7-95=x | | -2h+1=-25 | | 7×x+5=105 | | 18+29=x | | 5t-10t=0 | | |3/u+8|=32 | | x^2+-32=-4x | | 3/u+8=32 | | 5x+5=12–2x | | 3x+(5x-10)+(x+10)=180 | | 3^3+7x=9^x+1 | | 2y²+y=-11y | | 11x+9=12x4 | | (3w-8)-4(4-9w)+3=7w-2-(5w+9-3) | | 9x-3÷2=7x+5 | | (3t-1)+7=-8t-(3-2t) | | 9x-3÷2=7x+5÷4 | | 5a^2+19a-68=-2 | | a^2-8a+21=6 | | 150=10w |

Equations solver categories