If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X-5=20
We move all terms to the left:
X2+4X-5-(20)=0
We add all the numbers together, and all the variables
X^2+4X-25=0
a = 1; b = 4; c = -25;
Δ = b2-4ac
Δ = 42-4·1·(-25)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{29}}{2*1}=\frac{-4-2\sqrt{29}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{29}}{2*1}=\frac{-4+2\sqrt{29}}{2} $
| 12x+15=3(4x-6) | | 5a^2+25a+30=0 | | 5x+7x-4=20 | | 4x+6=7x-14 | | 100/n=19 | | (3x-4)^2=4(x+3) | | X-4÷10=3/5-x-5÷15 | | x+2x+3x=-36 | | 240=-12x | | 5x-0=3x+4 | | 7a-5a=20 | | x*0.15=50 | | 1+x+10=2(x+4)-4(-3+x) | | 3.7x=0 | | 5x-6/x+3=2 | | (5+2i)(3-6i)=0 | | (4-5i)-(7+3i)=0 | | 192=-4(1+7n) | | (3+9i)+(12-4i)=0 | | 3x^2+15=50 | | 7+3x=2x+ | | 6^x=39.7 | | 41.2–d=1.42 | | M+2=4m-m² | | 1/3x=4/92x+3 | | 0.5×x^2=x^2-2 | | 2x=1=7 | | p/4=p+3/10 | | 5/12=3/2c+8/3 | | 20/60=20/x | | 3/7=300/x | | 50=-16t^2-225t+25 |