If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X-840=0
We add all the numbers together, and all the variables
X^2+4X-840=0
a = 1; b = 4; c = -840;
Δ = b2-4ac
Δ = 42-4·1·(-840)
Δ = 3376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3376}=\sqrt{16*211}=\sqrt{16}*\sqrt{211}=4\sqrt{211}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{211}}{2*1}=\frac{-4-4\sqrt{211}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{211}}{2*1}=\frac{-4+4\sqrt{211}}{2} $
| 7x-22/2+x+6/4+x+x+1=26 | | A/3+b/7=2 | | 3y+16°=7y° | | 3*(5-x)+(x+2)^2=-6x+7 | | 16z-9=5z+3(7Z-3) | | p=(43-0.17p-3) | | 2-7x|=58 | | 61/3+w=12 | | 4x+6/5=26/3-x | | 6s−4=8(2+1/4 s) | | 4(a-1)=24 | | =(3x-6)÷(x-1) | | 3(x-3)=72/6 | | 5e=10+3e | | X^2+x-157=0 | | x/3-x/4=1/6 | | 3x.2x=54 | | 4y+18=0 | | 2x/3-3x/2=x/4+-13/12 | | x=1/2(x)+9 | | x=1/2(x)+( | | X=2x/3-3x/2-x/4+13/12 | | -4(x+)6=40 | | 2(x-9)=56/14 | | 6x+40=-100-x,x | | 2+10×2-5+3=x | | 13x+82=90 | | 0.2n=0.8n | | -18n+1=-17n-9 | | -18+1=17n-9 | | -45-(-39)=x/9 | | 43+4y-9=15y-14-3y |