If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X=140
We move all terms to the left:
X2+4X-(140)=0
We add all the numbers together, and all the variables
X^2+4X-140=0
a = 1; b = 4; c = -140;
Δ = b2-4ac
Δ = 42-4·1·(-140)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-24}{2*1}=\frac{-28}{2} =-14 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+24}{2*1}=\frac{20}{2} =10 $
| 4t-t=14 | | -(n-3)=-(n+6)+3n | | 1/7(7y+28)-6=-1/3(6y-21) | | 4x−2+x=2x+8+3x | | 3y=2(2y+2) | | X-4+2x+7=90 | | 7=-2(7k+6)+5(-7k-6) | | s^-4=0 | | 2x-25=1/2x | | x/12/0.2*3.6=2 | | 2x=1/2x+25 | | 0=-16t^2+960t+80 | | 75=-2x+600 | | 0=16t^2-960t-80 | | 2(5v-4)-6(5+7v)=-6 | | 6y+1=3(2y-1/3) | | 2^(X-4)+2^(x+1)=132 | | 2y+18-8y=24-3y | | 6x/5-7=-10 | | 12(2x-5)=3(8x+4) | | 2^X-4+2^x+1=132 | | 12x-9x=36 | | -35-5n=2(7n-8) | | 300=-2x+600 | | 7x-2(2x+1)=2x | | 6x-(2x+4)=4 | | -6a+36=8(a+1) | | T=50/71(w+77/2) | | 7-x/2=-5 | | -22+x=7(5x-8) | | 3x+4=2(6x+3) | | 720=(8*x-1)*X |