If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X=144
We move all terms to the left:
X2+4X-(144)=0
We add all the numbers together, and all the variables
X^2+4X-144=0
a = 1; b = 4; c = -144;
Δ = b2-4ac
Δ = 42-4·1·(-144)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{37}}{2*1}=\frac{-4-4\sqrt{37}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{37}}{2*1}=\frac{-4+4\sqrt{37}}{2} $
| 33a-38+33a-35+2a+49=180 | | 2+4(x-8)=5(x-4)-3x | | 8b-5=-5+3b | | 9+3=2n-6 | | 5-4j=41 | | 6=-1/4x | | u=0.014(3.14,5) | | 3(3x+3)=9x-5 | | C+8=26-2c | | -w-7=-5 | | 5y+16=3y-20 | | -p-5=-(6p-2)+(5+7p) | | x-15=x-13 | | 2x(5-3)-3×=5 | | 182=-y+251 | | 3x=-5x+48 | | 3n+6=2n+14 | | 7x-2=-3x-22 | | 8-t=-3 | | 7(1k+9)=84 | | 10-(6-10)=6(m-4) | | 5x=5=20 | | 3x-9=+27 | | 5(x+10)+10= | | 2x+3=3x-2.5 | | 16+19-4x=3x | | (2x-1)=(3x-14) | | 9p+13+3p-2+2p+18=180 | | x+2x+8=180 | | 5) 2x+4=x+5 | | 4x-7+x-22-3x-+15=180 | | 85=6x+5 |