If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X=252
We move all terms to the left:
X2+4X-(252)=0
We add all the numbers together, and all the variables
X^2+4X-252=0
a = 1; b = 4; c = -252;
Δ = b2-4ac
Δ = 42-4·1·(-252)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-32}{2*1}=\frac{-36}{2} =-18 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+32}{2*1}=\frac{28}{2} =14 $
| 9+(x-3)-9+x=60 | | 10-8t=9t | | 5(x-1)-8=x-4(2x-1) | | 4(5x-6)-19=17(x-4)+31 | | -2f+3=-f | | 19x+15=8x+15 | | -2/3u-9/7=-1/2 | | -7a+1=50 | | z/4=z+7/6 | | Y=4x+2;(5,-3) | | 3–5(2x+1)=3(3+x) | | z/4=7+z/6 | | z/4=7z/6 | | 158+a=180 | | -3(4x-8)=-60 | | X+3x+8=18-x+30 | | 3u+3=-18 | | 12(4+x)+5(-2x-9)=17 | | 8+3x=1/2(16+6) | | 8/5w2=160 | | 3(-4/3)-y=-4 | | 2x-15=41 | | 3u3=-18 | | 5(y-2)=-32 | | 10q=10+5q | | 10w=6w+32 | | .8x=50 | | 5(4+2x)-4(2x-3)=40 | | -21=-6+5w | | 2.9+0.01x=0.3x | | 4a+1/10a=3/8 | | 2^2×+9^2y=55 |