If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X=768
We move all terms to the left:
X2+4X-(768)=0
We add all the numbers together, and all the variables
X^2+4X-768=0
a = 1; b = 4; c = -768;
Δ = b2-4ac
Δ = 42-4·1·(-768)
Δ = 3088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3088}=\sqrt{16*193}=\sqrt{16}*\sqrt{193}=4\sqrt{193}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{193}}{2*1}=\frac{-4-4\sqrt{193}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{193}}{2*1}=\frac{-4+4\sqrt{193}}{2} $
| -10x+7-x=-15 | | 2x^2-52x-34=0 | | -40x+10=210 | | C(2.3)=25x+8 | | (3,5)m=7 | | Y+4y=87 | | 562.5=2.5x+200 | | 6x+10=(3x=4) | | -1/2(x)=10 | | c=113 | | X2-4x+768=0 | | 12x=576 | | 3x-5=19* | | (r/10)=4 | | 1/3x+7=−2 | | 3-3(x-6)+5x=x | | -4x-4=4 | | r/19=15 | | -20=-18v-45 | | 12x-6(3)=10(3) | | -16+6y=36 | | 7=7(v−89) | | 13—-r=7.03 | | 66=18+4x | | 82=3h+19 | | 3+4f=27-f | | 2/z-9=8 | | 42/y+4=74 | | 2x+2x+(x+18)+(x+18)=180 | | 4y+y=87 | | 3(2y+9)=51 | | 4x2+16x+64=0 |