If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4X=948
We move all terms to the left:
X2+4X-(948)=0
We add all the numbers together, and all the variables
X^2+4X-948=0
a = 1; b = 4; c = -948;
Δ = b2-4ac
Δ = 42-4·1·(-948)
Δ = 3808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3808}=\sqrt{16*238}=\sqrt{16}*\sqrt{238}=4\sqrt{238}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{238}}{2*1}=\frac{-4-4\sqrt{238}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{238}}{2*1}=\frac{-4+4\sqrt{238}}{2} $
| x²=1,21 | | 3=(2t+6)-4t | | 14x-(8x+1)=47 | | 28=x×3x | | 5x+240+5x=1136 | | X2-280x+96000=0 | | 12300=x-(0.09x) | | x=12300-0.09x | | 8=5x-2=28 | | 5(x2-16)-2x+18=5(x2+36)+2 | | x+(x-6)=40 | | X+.0249x=30571 | | 6t-2=18 | | 8×r=48 | | 9=7x-4x | | 5(x+2)+3=18 | | 5n^2−20n+6=0 | | 2^x+5=32 | | 5n2−20n+6=0 | | 16x+19=5×(4+3x) | | x+4=24+2x | | 5x+8x=114 | | 13(2x+1)=13^2 | | 1.8=0.06x+0.0833 | | 7x^2+18x-18=0 | | (18x)/((9-x^2)^2)=0 | | ((18x)/((9-x^2)^2))=0 | | 0.52=0.06x+0.0833 | | 6x42=8 | | 6x42=7 | | 6x42=6 | | 6x42=4 |