If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+50X-400=0
We add all the numbers together, and all the variables
X^2+50X-400=0
a = 1; b = 50; c = -400;
Δ = b2-4ac
Δ = 502-4·1·(-400)
Δ = 4100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4100}=\sqrt{100*41}=\sqrt{100}*\sqrt{41}=10\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{41}}{2*1}=\frac{-50-10\sqrt{41}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{41}}{2*1}=\frac{-50+10\sqrt{41}}{2} $
| 5(x+3)=31 | | 6(k+12)3k=3 | | (9x+60)=(7x+76) | | (9x+66)+(5x-26)=180 | | 48+6k=10k–164 | | /7(5x−4)−1=14−8x | | (x-3)²-x²=4 | | 5x+12=2x+7 | | x-85+41=650 | | (3x+15)+(5x+141)=180 | | 6h+7=7h-25 | | 5a+29=0 | | x/22=193 | | 770/55*55*x=42 | | (7x+27)+(4x+32)=180 | | 4-5x=-2x+10 | | 7770/55*x=42 | | 2/3*3x+6=14 | | k+8(k-2)=3k-8(k-5) | | 984/12-15+x=286 | | 10q-43q=45 | | 333*x/18=55 | | Y=90+2/5x | | 8973278328723897=89898989x | | -3(2x-3)+4=30-2x+3 | | 3(y-4)=-2-12 | | 4m+8=7-6m | | 3/2x=2/4 | | 2.5/0.5=x/0.25 | | 4m=8=7-6m | | 18x+1=20x-1 | | 3(3h+h)=2(h+5 |