If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+5X-204=0
We add all the numbers together, and all the variables
X^2+5X-204=0
a = 1; b = 5; c = -204;
Δ = b2-4ac
Δ = 52-4·1·(-204)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-29}{2*1}=\frac{-34}{2} =-17 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+29}{2*1}=\frac{24}{2} =12 $
| 5p-6=2p+18 | | 10y-8=42 | | 2x+105x=1 | | X2+5x-240=0 | | u/5+14=16 | | 8(3+m)=48 | | -9f=-9-10f | | 10y-9=51 | | a×a=81 | | 10y+10=100 | | 114+5x=15x-6 | | 45=9-6x | | 3-2(x-5)=-7 | | 3-2(x-5)=7 | | 41=10x+-9 | | 34=2-4(x+2) | | -29=-2+3x | | 7y=50-1 | | 2x+3/4-1/4=0 | | 2-3x=-40 | | 5x÷3-4=11 | | p/2+9=14 | | (u+4)/3=(u-9)/8 | | -2+9(x+1)=52 | | 196=192+x | | 4(1-2x)=3(2-x)+1 | | 4(y+2)=8 | | X(x+1)(x+2)(x+3)=11880 | | 2(5x+1)=10.5 | | (p÷8)+11=71 | | 35=6+2.5(n-1) | | q/3+4=9 |