If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+5X=45
We move all terms to the left:
X2+5X-(45)=0
We add all the numbers together, and all the variables
X^2+5X-45=0
a = 1; b = 5; c = -45;
Δ = b2-4ac
Δ = 52-4·1·(-45)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{205}}{2*1}=\frac{-5-\sqrt{205}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{205}}{2*1}=\frac{-5+\sqrt{205}}{2} $
| 2p-p=21 | | (3x-1)(x-1)=96 | | 8/34=x | | 7=5y+16 | | x*(x-32)=180 | | 6/5x-12=20 | | 5+1-x-2x+1=3+2+x | | Y=36/(x+1) | | 715+3n=448 | | 108+4n=76 | | 100-45n=11 | | -16+2n=35 | | 6n-2(3n-5)=4n-6 | | 8m^2-9=-7m | | -5u+2(u-5)=-22 | | 2.8=a+5.5 | | j3+6=10 | | -2=-3d+10 | | 6n-19=4n+17 | | 7z-2=10z+10 | | 3x+6x=7x+3x+10 | | 42-7x=24-x | | -21-8a=-1+6(4-5a | | 9/11=x/594 | | 14-7x=14-5x | | 2x/2=3 | | 7y-2y=115 | | 40+2x=120 | | b/7+89=99 | | (2n)/3=18 | | (2n)=18 | | 60=(4*h)+(6*h) |