If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+6X+X=0
We add all the numbers together, and all the variables
X^2+7X=0
a = 1; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·1·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*1}=\frac{-14}{2} =-7 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*1}=\frac{0}{2} =0 $
| (x-3)/5=8 | | -3+18=7x | | (x+7)/3=9 | | 6x-2=2x+50 | | 4x-4=3x+56 | | 5a+7=23-3a | | 5x-4=3x+56 | | 7(v+3)=-3v+11 | | (5d-3)/4=2d-3 | | -21+4(x-1)=4x-3(4x-1)-4 | | 4x(x+0)=0 | | 5x/3=12+x | | x2+100+2400=0 | | 56x-132=4x^2 | | 4b=3(3b-15) | | 7x/20-2x/5+x/4+3x/20=7/10 | | -21+4(x-1)=4X-3(4x-1)-1 | | X+2/3-2x=10 | | T-(3t-1=t-4 | | 5x+3+x=2x+9 | | 10y-39=11 | | 7h-11=48 | | 8a-9=8*10-9 | | 5h-2=2H-19 | | 2x+20=140-28x | | (8a-9)=7a+1 | | 4x-x=7^² | | 5(2x-3)-3(2x+1)=0 | | 6y+8=3+12y | | 4p+4=2p-8 | | 66y+8=3+312y | | 6(2-4y)=4y-6 |