If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+7X-44=0
We add all the numbers together, and all the variables
X^2+7X-44=0
a = 1; b = 7; c = -44;
Δ = b2-4ac
Δ = 72-4·1·(-44)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-15}{2*1}=\frac{-22}{2} =-11 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+15}{2*1}=\frac{8}{2} =4 $
| 12(x-15)=1/2 | | -13-2x=-73+13x | | 124+(13x-25)=180 | | 2(7v-5)=1/2(28v+6) | | -d/9=8 | | x^2-4.2x+2.6=0 | | -6j-14j=-20 | | 13x-87=2x+144 | | 8=z/4 | | (2x-18)/(4)=(3x+1)/(2) | | 6x-3/8=8 | | 10x+10=18x | | 9-2x+3=4x-x+27 | | -7d+3=18 | | 13v-v-4v-4=12 | | |6x-3/8|=8 | | -13-2x=-73+13 | | 8-(3+b)=b=b×9 | | 7h-6h+5h-3h=9 | | 24+x/4=10 | | (X+1)^2+(y-2)^2=5 | | -2(-2-20)=-2c-20 | | 2x+4+x+x=48 | | 3=3(c-6) | | 8x/5x-4=7 | | 5x-(2x+3)=0 | | 6(x^2+2x)=2(3×^2+12) | | 4a-10a=-14 | | (X-4)^2+(y-18)^2=5 | | 3(x-2)^2=40 | | 1.8=3m+3 | | √2x^2+(√2+1)x+1=0 |