If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+7X^2=128
We move all terms to the left:
X2+7X^2-(128)=0
We add all the numbers together, and all the variables
8X^2-128=0
a = 8; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·8·(-128)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64}{2*8}=\frac{-64}{16} =-4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64}{2*8}=\frac{64}{16} =4 $
| 8/6=r/9 | | 8x-3/4=3 | | 7x+35=-7(-8x-5) | | 2(x+4)-4x=20 | | 2^x+1=366 | | 2^x=365 | | 2^3=x | | 2p+27=8p-7(2-5p) | | 2(4-3)=2x-6 | | 2^x-365=0 | | x^2-365=0 | | -10-p=8+8p | | 4q=4q+5 | | W-w=0 | | 4x-80=2x | | 25x^2-192x+123=0 | | 2p-6=2p | | x/15+1/3=30 | | (2x-3)^2-14=2x(x-7) | | 25y^2-144y+192=0 | | 1-6a=14+8-7a-6a | | (2x-3)^-14=2x(x-7) | | 155=-u+72 | | 36-12=4(x-1) | | 6z-4÷2=-11 | | 1/3x–9=4/9x | | -0.10(33)+0.65x=0.05(x-18) | | 3n+9+12=20 | | 2023=0.638x^2+6.671x+627.619 | | 8-9x+9+5x+5x-3=5+3x5 | | -x=3x^2+3x+6 | | F(-x)=3x^2+3x+6 |