If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+96X+256=0
We add all the numbers together, and all the variables
X^2+96X+256=0
a = 1; b = 96; c = +256;
Δ = b2-4ac
Δ = 962-4·1·256
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-64\sqrt{2}}{2*1}=\frac{-96-64\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+64\sqrt{2}}{2*1}=\frac{-96+64\sqrt{2}}{2} $
| 8=0.2^x | | 14=1/2b7 | | 5y2=2y+2 | | (3/4)y+2y=1/2+4y-3 | | 3n+4-2n=8 | | (a-2)(a-5)=0 | | -7y=9+18 | | 4(x+2)-5=2(x-1)+7 | | 3x(5x-7)-2(9x-11)=4(8x-13-17) | | 12+15y=2y+7 | | 10-5y=4 | | X2-x+90=0 | | 9/4u-7/8=-1/2 | | -5=5x=30 | | P=3^2+3t | | Y(2x)=55 | | 2x-6-7x=-31 | | 19x-4x=75 | | 8+5=2x-4 | | 3c=221 | | 3y+2-6=0 | | (9x)/(7-6x)=10/1 | | (9x)/(7-6x)=10 | | (2p+3)-(5p-2)/6p+11=2/17 | | T=4k+2 | | b=3-7 | | 5=0.9x+0.1X | | x^2-50x+75=0 | | 7y-35=10-3y | | Z-8/5+z=6/7 | | 10w-3=34 | | 3y-3=-2y+8 |