X2+x2-7+x2+x2-7=169

Simple and best practice solution for X2+x2-7+x2+x2-7=169 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+x2-7+x2+x2-7=169 equation:



X2+X2-7+X2+X2-7=169
We move all terms to the left:
X2+X2-7+X2+X2-7-(169)=0
We add all the numbers together, and all the variables
4X^2-183=0
a = 4; b = 0; c = -183;
Δ = b2-4ac
Δ = 02-4·4·(-183)
Δ = 2928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2928}=\sqrt{16*183}=\sqrt{16}*\sqrt{183}=4\sqrt{183}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{183}}{2*4}=\frac{0-4\sqrt{183}}{8} =-\frac{4\sqrt{183}}{8} =-\frac{\sqrt{183}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{183}}{2*4}=\frac{0+4\sqrt{183}}{8} =\frac{4\sqrt{183}}{8} =\frac{\sqrt{183}}{2} $

See similar equations:

| 3s=24=90 | | -5+3x=+4 | | 3(q+3/4​ )=2 | | 2x-1=11/(x+4) | | 2+6√2y+9y^2=0 | | 20/30+6/30x=25/30 | | (x-1)(x-2)(x-3)(x-6)=36x^2 | | -2u+-14u=-16 | | 2(n+16)=14 | | 18=3(f-14)+3 | | x-(-16)=-28+12 | | |-2+x|=3 | | Q=105q | | 2j-j-1=8 | | -19=-13x | | 35+2x=39 | | -(34-66)=(-32+z)-(-32) | | 4d+6+2d=0 | | X3+3x=47 | | 17z-16z+3=20 | | 15-5k=9(3-k) | | 9^2+8y=121.5 | | 18h-15h=15 | | 8/9j=15/8 | | 3(n-19)=-9 | | x/6+x-8/4=1+x-6/3 | | 2y^2-245y+4736=0 | | 11p-6p=20 | | 4m+3m=-14 | | 3t-18t=4=-26 | | w+4/5=-1/4 | | -2x+7=x+7 |

Equations solver categories