If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=51
We move all terms to the left:
X2+X-(51)=0
We add all the numbers together, and all the variables
X^2+X-51=0
a = 1; b = 1; c = -51;
Δ = b2-4ac
Δ = 12-4·1·(-51)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{205}}{2*1}=\frac{-1-\sqrt{205}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{205}}{2*1}=\frac{-1+\sqrt{205}}{2} $
| 55=12+4w | | 5(2+y)=55 | | 3t-t-2t+2t=16 | | 7x-34=-6 | | 5(2x-6)+12=5x-8 | | -4x-5=-10+6x | | 40z-38=17+29z | | 5(x-7)+42=3x7+2x | | 4n^2+3n-1=0 | | (x-1)^3-5=0 | | -4x=-1/2(10x+18 | | -11+99p-8=-19 | | -9+3y=-3 | | 3x+11+4x-1=180 | | -40=1/6k | | 3x+18=6x+5 | | 5x-40=1x+24 | | 10t-10=9t-2 | | -18+(-6c)=-42 | | 16r-3=r+2 | | 7n+5+3n-5+30=180 | | (0x)(x)=0 | | 2(6x-8)=40=4x | | -1m-5=-5 | | (5x+1)/3=(9x-7)/11 | | 20=x/9+8 | | 6x+x/4=22 | | -7w-12=37 | | -2(3x-5)=2x=10-8x | | 22+3x-4-x=38 | | −3x=−132 | | s4− 2=4 |