If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2+8X=0
We add all the numbers together, and all the variables
2X^2+8X=0
a = 2; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*2}=\frac{-16}{4} =-4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*2}=\frac{0}{4} =0 $
| 2x-9=2x+7 | | 25=2a-9 | | 2(x+1)=x3(x-2) | | 4x+34=5x | | -81x^2+x+936=0 | | 1.4t^2-9.8t+4.9=0 | | 1000000+10000000x=0.01(2.0)^(x) | | 1/3(6x+9)=x+5 | | -1×14x=12x+17 | | 1.4t^2-9.8t-4.9=0 | | 7x=4×+27 | | 100+0.2*(x−100)=250 | | 4=c+12/5.7 | | (6x^2/6x+6)+(5x/5x+5)-6=0 | | 15(x+1)=7(x+9)=4× | | (3x-14)+70=180 | | (6)(x/x+1)^2+(5)(x/x+1)-6=0 | | a`2=25 | | 14=2(3x+1) | | 4680=4*27+x | | 9/8x-9=1/8x-6 | | -2x-3=-4x-3 | | 3(5x+7)=14x+5 | | 4680=4(27)+x | | 5x^2+7=132 | | -4(5t-2)+3t=5t-9 | | 7x-24=5x-18 | | 9y-15=39 | | (15t)/5=(2t+3)/6 | | 7x/(x^2-49)=0 | | 0=7x/(x^2-49) | | (4x+45)+5x=350 |