If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=19
We move all terms to the left:
X2+X2-(19)=0
We add all the numbers together, and all the variables
2X^2-19=0
a = 2; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·2·(-19)
Δ = 152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{152}=\sqrt{4*38}=\sqrt{4}*\sqrt{38}=2\sqrt{38}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{38}}{2*2}=\frac{0-2\sqrt{38}}{4} =-\frac{2\sqrt{38}}{4} =-\frac{\sqrt{38}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{38}}{2*2}=\frac{0+2\sqrt{38}}{4} =\frac{2\sqrt{38}}{4} =\frac{\sqrt{38}}{2} $
| -5x-18=-28 | | e^2-2e-8=0 | | d²+7d-5=0 | | -45=6w+15 | | n-2=6n= | | 3/4b=12/2 | | 7k=8k-k | | 2x+14=3(x+5) | | 29.4+y=78.4 | | 8y-20=y+15 | | -5.2=5.1y-4.6y+5.3 | | 14.7+y=44.1 | | 4.9+y=19.6 | | 2(-5-1.5x)=-5(0.2-8) | | 3b/4=12/2 | | 2(-5-1.5x)=-5 | | 2t2+50=0 | | x×2/3+5=27 | | -6(v+3)+3v+5=5v+7 | | 5(x-3=5x-15 | | 42+1.3x=122-1.2 | | 40=7x-54 | | 2(6)-2x=3 | | -8=15x+22 | | 7(8-(-7x-5))=294x+266 | | (x-4)^2-9=16 | | 10x-26=9x-2 | | 9x+7-4(x+1)=8x+5 | | 9x-13=10x-19 | | s-71=-s-7 | | -5x+2x+6-1=-1 | | -9g=-3g-9(g+2) |